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ABSTRACT 

This analysis i s  based on the one-dimensional I inviscid, non-heatLcaxkrctik 

flaw equations of an ionized gas (whose electrical conductivity i s  in general a 

function of pressure amt temperature) flowing huugh a channel for he purpo# 

d ihe extracth of electric$ power, The pr&le;si is: given h e  in!zt dit ims 

d a fixed channel length, what should be the distribution of c h m l  cross-sectional 

I area (and hence of dl other gas properties) in order to extract maximum power? 

This variationd problem i s  solved in the present pcper by means of a computatiocrd 
1 
I 

i 
procedurebasedon the "method of  gradientsu,  Themethoddevelopedhero ' 

can be applied to either a contirmous-electrode generator or a segmented-electrode 

generator, and with tensor conductivity. 
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Two series 04 calcuicltions were ;xdormed. In the first series, the con- 
0 

ductivity was assumed to vcary with T . i;.:ui& comrergence to an optimua 

distribution was dhained with w = 12 for all inlet Moch numbers used except 

$4 2 = 2. The opti.;iuPn powen extrcted were then campared for various inlet 
0 

Moth d e n ,  both far constant inlet temperature and for constant inlet stagnation 

temperature. In die second series, conductivity was asar;ned to vary with T /6 10 . 
It was found hot the power emacted kzeps increasing as exit ,xessure decreases 

and no mzximm powar exists for finite exit arm. With practical limits Tor 

exit-to-inlet area rat iod l  0 and 23, he cpti;nun extracted ,sower was then 

obtained for vcriour inlet fir\& nu.;&ers. As ex,;ected, tke inprovenrent Over 

the constant velocity distribution was great. 11 c 7 /-/c /J  
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Tha f o l l o w i n g  no;;ienclature i s  used i n  the pa2er:  

cross-sectional area of ?Ai-12 channel 

cross-sectional area at inlet of r W C  channel 

cross=sctimal area at exit of channel 
mgnetic field strength 

(1 - :q c. 
spccitic heat of constant pressure 

functions of 4, x, Qlc: yi; i = I, 2 f o o o f  n 

constant 

gsnerator lood factor 

iengtft of hiHD channel 

:.:a& nud!er 

i,iac!? number at inlet of A2-D cltannel 

gas pressure 

cos ,xossure at inlet of ,+!:-E channel 

gas pressure at exit d 2d’d-iD channel 

nqnetic interaction praaeter 

gas constant 

0 

gas teinperahrrs 

gas teqeraturc at inlet of JAMD channel 

~ a s  teinpercrtore at exit of 2 J i D  dtunnel 

gas velocity 

gas velocity at iniet of JXHG channel 

gas velocity at exit d ;,IHD &anmi 

distance almg XiWD channel from he inlet of the channel 

cfope&nt varidsles; i = I, 2,00,pn 
vducs of yi at x = L 
driving function 

assigned value of d(x)  in the first of successive computations 



I I 

specific heat ratio of a perfect aas 

influence functions; i = 1 , 2, ..,n 

gas density 

gas conductivity 

enhalpy at inlet of >;AD channel 

q>tiiilum onhdpy at exit of hlHD channel 

enthalpy at exit of c?/li-K? channel obtained from first calculation 
in the iterative ,wocedure 

cycl atron frequency 

col I ision tixo 



1. INTRODUCTION 

In several previous reports (I , 2), Sutton has investigated the one-dimensiond 

MHO flow for power generation. The five flow configurations investigated were: 

constant velocity, constant areaI constant temperature, constant pressure, old 

constant density. Calculation, in Ref 1 hawed that for a given chonnet length, 

the cmttant velocity distri b u t h  yields the largest anaunt of power among he 

five cases investigated. Although the constant-velocity distribution is  probcbly not 

too far from tcre optimum, it i s  by no means cleor that it i s  the tnre optimum anmg 

the infinitely many possible disti butions. One would intuitively suspect that, 

since the optimum distribution must be dependent on the paticulor function which 

governs the variation of conductivity, the constant-velocity distribitiun which 

igmrres th is  dependency is  unlikely to be the true optimum. 

To seek a true optimum velocity distri-bution (and hence all the other 

v a r i d h ,  including cross-sectional area), one might at f i rs t  be tempted to use the 

classical approach of calculus of variations, i.e., the Euler-Logrange equations 

with Lagrange multipliers. This was indeed tried. It turns out that in th i s  problem, 

he end p i n &  (corresponding to the properties at the two ends of the channel) are 

not all fixed. Neither ore iheso-called "na tu ra l  boundary  c o n d i t i o n s "  

satisfied, In fact, the end-point at the upper integration l imi t  i s  precisely one 

of the quantities that we wish to maximize. Hence the usual variational method 

fails in this problem. An attempt to transform the independent variable from distance x 

to stagnation temperature T simplifies the calculation greatly (due to he 
stas 



simul tanaous reduction of one dqmdent var id ia  d one constraint equaiion), 

but unfortunately does not Seem to raiimve the essential difficulty. Furherinore, 

i t can bo shown Hiat for a class d pr&ic;ris of wiiich the presznt ,x&le;n i s  a 

special cose, he classical Eulor-Lagrange fw.auiation always I d s  to a singular 

solution. A different aaproclch i s  horzFore used in this ,paper. phis i s  the ;nethod 

of gradients (aiso know as he i d d  of s t q m t  &scat) and i s  to 5s briefly 

evlained in the next ssction. 

Tfia analytical ,mri.ion of th is  papa was first issued as a report of l imited 

circulation by the Space Science L&oratory of h e  General Electric Coii12my (3). 

The apiplication of he aehod of gradients to a variational p6ha-n 

was q3,zorcntIy f i rs f  pro;losed by Courant in I941 (4). Recently it has been 

applied by Kelly (5) and 2rtyson (6) and h a i r  co-workers to the optinizotion of 

flight trajectories in satellite and space voliicle re-entry. The main concept can 

be sutiknarized as follows: 

Consider a set of (n + 1) functions 

which WQ ail functions of the independent varicrjlo x, betwzen :: = 3 and x = I. 

b r  convenience, we seek out one of boa, 4, and calI it tho "driving function". 

(In m;7055 ;xchlc.as, one of h e  functions i s  the do.ninant variable of the problem and 

therefore i s  the obvious choics as t i ;  &iv;;iL. ;unction, In other l~r&lst-ns, how- 



particular selection turns out to be unilnyxxtont.) Tie remaining n functions 

can be considered as he  "dependent  v e r i a b l e s "  . They are governed 

by he n !mown equations: 

It i s  to be noted hat, including 4, we have n + I unknown functiambut 

only n equations. Hence one of the functions, say d ( x ) ,  can be arbitrarily 

assigned. NOV~ we wish to c id i fy  A(%) in order to aaxirnize (or nininize) a 

certain quctntiQ 2 which is CI frmction of he  - Snai values g,L, yaL,- - #  gnL of 

the dependent variables y,, yz, * * . J  y,, . That is, we wish to find the pirticular 

d ( x )  such hat  

solution (i.e., he zero-ih order q>,xoximtion) and write: 

~ i . ; o x t w e d e C i n e a s c t ~ ~ " i n f l u z n c o  f u n c t i o n s "  Ai such thak 

obtain, noting that %le resuiting tvm quantities with doubis mmations cancel out, 



Integrating Over the distance x ,  from x = O  to x = L, we obtain: 

To solve for Ai by Eqs, (2), we must assign boundary values to A; Here we 

assign these values ctt x = L sJch hat: 

With t!?is choke, the !e!+ side of Eq, (3) becomes: 

In he problem t h ~ t  wuo, s!!a:I consider, ifw values of the Jepeadent var ides at 

x = 0 are fixed and the:efo:e the last ten m the riaht sids of the dove equotim 

can be dropped, avsirix:ing into the left side of Eqc (2): 
b -v .  

This  equotim enddet us to cdculate, for a small perturbation 6 c l ( ( X )  of the 

driving f r m t h  d(%) # the chw &$on the function $which we wish to optimize. 

(Note thd &(x) lias already been obtained from the differential :qx;:ong (2)# 

together wrth the ;jwndary conditions  NOW, for a given value of J:(id)’dx, 

4 



G =co&cmt 

This represents ffie "s t eeper t  descent' dimctim towatcl, the ninimm$, 

For cm & dong this direchn, 

a d  he cdcu!ation is  repeated, It 1s clear that with o different a(%) 8 dl the 

$ ( x )  vdues will be different dso, In h i s  way each cycle of calculation 

yields a modification of d k )  , that i s  the Ad(7C) 

to its aptirnm value. Tho calculatiorr can be terminated when 

JLE Ai 
first calculation. 

which will bring clam 

afi 2drr, 
i s  much smaller thar its vdue d w i q  h e  

i= f 

5 



pr~blem. With ohs USUQI assuiiiptionr Of: onc-ckisnsional upproximation, ?erfect 

gas law, and nonviscous d nonSieat-conducting fluid, (see Ref. l), rjie 

relevant equations are 

Energy 

In the &me equations, CT is die conductiviiy cnd :< i s  h e  loding factor; i,e., 

h e  ratio & aciwal voltage to open-circuit voltage, Tho &me equations qply  

to either a continuous-zlectroio generator wii% aet<<l or a seysented-cdecfrode 

generator with ahitrtary sot , diere a i s  the cyclotron frequency and t hi? 

collision tiae. i-?ov~0ver, h e y  can also bo ap$ied to a continuous-electmclz 

is the conductiviiy with 6 = 0. 

Given he initial conditions at x = 3, we wish to ininisize tho final --- 
&.wdni;': ' i d a t  enthdi2y (CpT+ T)L U" 

-- - i2((3L) be he driving function. The depandenf 
dU 

a?::=$., 

Let dxl 

Y,= u, Y,= F ,  %= I- 

variddes me U, and T, Lzt 



Before proceeding any fwther, i t  i s  convenient to non4imemidize  every 

quantity. For h i s  purpose we define: 

x 
L 

- - 

(Note that the subscript 0 denotes initial conditions at x =C). Waving defined 

h s e  quantities in m-dimensiond f m ,  we shall in the following drop the bar on 

top# with the understanding that all quantities em now non-dimensionol in the 

manner just defined 

- 

The equations for the nodimensionat dependent varides yare: 

du 
&j -  = d 

7 



Let 

The &we equatians can be rewritten: 

&=o( 

The non-dimnsional final enthalpy which i s  h e  quantity hat we wish to minimize is: 

q,= t;+ y bf: U; 

8 



The boundary values of L, A+, CCnd A, are therefore: 

The quantity proportional to our &sired &(z) is: 

Eqs. (17) are then sipplified:. 

9 



and Eq. (19) becomes: 

It hould be noted that in;n(dilD problem, the physical reality calls for 

positive and non-vonishing values of T, d a, Under these restrictions, 

it may be that a stationary value of gi does not exist, In other words, it i s  

possible hat the optimun 

a requirement which i s  hard to meet in practice. This i s  reflected in m e  of the 

requires zero p and T (hence infinite area) at exit, 

calculations. Thus for certain assumed forms of conductivity in relation $0 

temperature pr temperature ~ n d  pressure, this method results ifi n; .,iini..x.:; 

despite h e  fact that successive computations yield progressively sndler $, 0 

For these instances, there i s  no stationary value d 

function d ( 4  within the restrictions of physical reality, 

with respect to the driving 

it alx, should be noted that peculiar to the r"JHD problem, $4 will be 

a& becomes zero, or equivalently, the 
n 

zerowhenever 2 A: 

right hand side of Eq. (23) vanishes. Substituting the boundary c d i t o n s  given 

i--r 

in Eqs, (220)~ (22b), and (22c) into Eq. (23), one obtains ($d),=, =o 
regardless of the vdue of G, Since d<X) i s  arbitrarily assigned in the first 

iteration, the value ofd at x L 1 will remain this arbitrarily assigned value, It 

means h a t  th is  method does not alter the rate of chmge of velocity ot the exit 

from i t s  initially assigned value. This appears to be purely coincidentd due to 

the P@icula values of boundary conditions associated with this pr&lern, However, 

we shall see later that actual computations seem to indicate that th is  does not pose 

an intrinsic dilemma to the minimizdion ~f , 



du 
dx (16a) 

11 



Step 2 

equationsforthe " i n f l u e n c e  funct ions" &, A;, ij.nrt AT 
Numerically integote the following set of simultaneous differential 

Thisintegration istobeperformed"backwords" fromx=I  tox=O,  startingwith 

the boundary conditions at x = I: 

Ihl*l, = u, (224 

Note that all quantities such as u,@,T,and Q appearing in the coefficients of Eqs. (21) 

are the results of Step 1 

Step 3 The desired variation 6o((x) on thi? driving function dk+) i s  then 

12 



If conductivity is a i d  to be a function of tmperature only a d  i s  of he 

then Eqt, (Xa), (WJ), and (16c) reduce to 

du ;6;="' 

ji;nilarily, Eqs. @la), (21b), and (21c) reduce to 

(21 a') 

(21b') 

13 



The dove two sets of equations are io be integrated numerically by the 

procedure outlined &we, together with the given boundary conditions, 

The nunberical integration was carried out with an W C  4030 electronic 

digital computer. In general, the pqram WQS wri-n in such a way that successive 

" E)  e sc e n d i n g " steps are progressively siid lor, and or0 ppportianai to 

qr& d its value in the first ca~cuiotion, or dion inspection shows bat jZ1 

has reached a .aini:nui;i value, 

2)$; L 
h e  vdue  of J:( 2 ~i ti.x in successive coraputaiions is progressively i= 1 

cases i s  set to be constant in successive co.ii:sutafions. 

Fit, 1 i s  a typical exaqde howing die pattarn 0: descent d $, in 

arriving at i t s  xini:,iu;i val~1e. The oxit pressure i s  used as ({io abscissa to indicate 

h e  ziannm d convergence, Other quantities, such os tecperabre, can also be used. 



In ZO~:TC;SI QO Fig. I ,  a typical cas0 of progressively dascd ing  , but 1 

with no apiarent ,$ni,,iu;.> 

a xininuu 

ininiiaun $, d o 3  not exist, 8 i;ioves along a !iy;'e bola-like b>ath, 

i s  shown in Fig. 2, CS i s  of interosi to noto that when 1 

cxit~s, ,Jrogasivzly aoves dmgj a parabola-Sike puth, \Mien a 1 

1 
LLI 

T&ie I presmtr he results for r= T , where cJ= 13 with he oxceptian of 

the dscr3asc of 3 In succmivs computations i s  I ;I@ .lfmt given in Fk. 2, The 

belwvior of this vi3e of descent wi l l  be discussed later, Velocity variation for 

optimum $fl of these runs are shown in Fig. 3. The local Mach number ond channel 

cross-sectional area are also calculated for these optimum cases and are given in 

L 

Fig. 4 and 5, respectively, Calciriafions using different sire of s t e p  in the 

iterations show Rat the final resut IS are independent of the size of the steps taken 

in each of the successive coraputahnt. 



Case 5 is like that d Case 1 except tE13 value d 'd i s  tdten as 1.67 instea! 

of 1.2, This cha#ja results in a lace increase of extracted power. The velocity, 

In case 6, w = 2 was u d .  It was found that sinil or to case 4, here was 

a progjressive dzsccnt of jd I but with no :;iinim;a. 1 
Case 7 was cssignod an do = 1 in t;io first co.agutatim. As noted before, 

hs slope d U at x = 1 will then always renain unity in all the succcssivo cmputationr. 

Velocity, IOCQI I?hch nuher, and cross-sectional area for o?tir;iurn conditions ara 

16 



we &fain q e =  

0 

~ h i o  variation d G. w i h  >ti was &opted in caes 3, 0,10. (,\;\ 

respectively. X'i 

= OS, I .5,2.0, 
0 0 0 

2 
=: 1 i s  already coveEd in case 2.) 

0 

Velocity, Mach nubah, and cross-sectional area of ibse cases arz shown 

in Figs 7, 2, d 9 respctively. Frail Fig. 16, it i s  seen hat tha amst favorable 

entrance h'iact? nu:&er i s  new unity, 

Si;ni lar calculations were ps rfomed in case 11 for I f =  1.67. Psain, Go 

2 
was chosen to be unity for hi = 1 .e. The results d case 11 are plottad in Fig. 60 

It was noted that for conductivity taking he form of CT= To, cases 4 md 6 

0 

do not have a mininu;;i ldl, p'l in  $lese cases is progressively smaller in Euccessive 

computations, and p 

can be seen from Eqs. (lbb') and (16~'). Pressure anCl ter.iperature will 

Q n d f progressively approach zero. This behcrvior 1 

'' becum excessively negative throughout the 

&ameli Now, dim tGte kcas within the imn thes i r  in these equations assume 

dz approachz~rowllen dp nx 

a negative value, then p and T wilt always 5e 2ositive and cannot approach 

zero. When these terns assume a positive value, then * dx 9 d% becane 

excessively negative if A\ or y or both take a large value, and hence 

p1 and TI approaches zero at the exit. Tho first term inside the parmtlwzsis in both 

equations i s  always positive. In the case of a near1 y-constant-velocity channel I 

2 
0 

17 



say, t h i s  term i s  excessively large when @is small The d o v e  is a heuristic 

explanation of case 4, where hio 2 becoiiexcessively large, and of case 6 ,  

where @ i s  not sufficiently large. 

U Conductivity varies as 
T" 

Ji; 
When carductivity i s  taken as a function of both temperature a d  pressure, 

d U  
L e -  
-L- 

Eqs, (21a), (21b), and (2lc) become: 

(160") 

(I&") 

(16~") 

(2ia") 

(2%") 

(21 cO) 

18 



Cases 12 to 15 in T&le LI l i s t  the given d i f i o n s  ME: results in Pile series 

of computations carried out with h i s  im of conductivity. None oi this series of 

computation gives & niniinm. 4. 6, in successive computations descends like 

&at given in Fig, 2, It appears that he heuristic argumnt outlined before for 

cases 4 and 6 is equally Cpplicctle to explain tho result. Fig, 11 i s  a Wicd 

exonpIs of the successive steps a#umcl by velocity, presswe, temperature, d 

crort=sectiond arw in he iteration. 

Since zero pmssure and teapcraturz at tho exit i;aplies' infinite cross-sectional 

area, one is naturally interssted only in exit pressure an$ temperature which give 

an exit cross-sectional crca of practical vdue. For his purpose, an inteqdated 

$, is obtain& for a CixeC: exit-entranca cna ratio. $ tius obtained is tcbuIotafeC9 

i n f a l l e  l l for  = 13, CMZ 2.3, Sinilar results for cases 4 anJ 6 cxe also 

given in TcrLle IT, The blank in c-* 15 for 

constant velocity ( 4 = 0) calculation alredy y i d d s  an - =13,%, In ali 

casss, the &if ailfaso over constant volocity distribution i s  large. 

1 

#' 

= 1.3 isdue toihefact hat the . "1 
A 

0 

0 i'i 

0 
A 
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