UNPIUUSHED PRIIIMMABY DATA
ABSTRACT
This analysis is based on the one-dimensional, inviscid, non-heat-conducting flow equations of an ionized gas (whose electrical conductivity is in general a function of pressure and temperature) flowing through a channel for the purpose of the extraction of electrical power. The problem is: given the inlet conditions and a fixed channel length, what should be the distribution of channel cross-sectional area (and hence of all other gas properties) in order to extract maximum power?

This variational problem is solved in the present paper by means of a computational procedure based on the "method of gradients". The method developed here can be applied to either a continuous-electrode generator or a segmented-electrode generator, and with tensor conductivity. UTS PRICE

Microfilm \$

*The analytical portion of this paper was supported by the Space Science Laboratory of the General Electric Company. The computation and final completion of this work was supported by the National Aeronautics and Space Administration under Gporntract Ns G-316) to the Institute for Direct Energy Conversion of the Town School of Civil and Mechanical Engineering of the University of Pennsylvania.

1 Professor of Mechanical Engineering and Director, Towns School of Civil and Niechanical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.

2 Research Fellow, Towns School of Civil and Mechanical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
Peuncylvarion
U., Pieabiplicia la nt. for Dived Energy

$$
6907006
$$

Two series of calculations were performed. In the first series, the conductivity was assurned to vary with T^{ω}. Quick convergence to an optimum distribution was obtained with $\omega=10$ for all inlet Mach numbers used except $\mathrm{ivi}_{0}{ }^{2}=2$. The optiiaum powers extrested were then compared for various inlet Mach numbers, both for constant inlet temperature and for constant inlet stagnation temperature. In the second series, conductivity was assured to vary with $T^{10} / \sqrt{\neq}$ It was found that the power extracted keeps increasing as exit pressure decreases and no inaxi:nuan power exists for finite exit area. With practical limits for exit-to-inlet area ratios of 10 and 20 , the optimum extracted power was then obtained for various inlet mach numbers. As expected, the improvement over the constant velocity distribution was great.
AUTHOR

Nomenclature

The following nomenclature is used in the paper:
$\mathrm{A}=$ cross-sectional area of tihe channel
$A_{0}=$ cross-sectional area at inlet of AHD channel
$A_{1}=$ cross-sectional area at exit of MiHD channel
$B \quad=$ magnetic field strength
$C=(1-K) c_{0}$
$C_{p}=$ specific heat of constant pressure
$f_{i}=$ functions of $\alpha_{1} x_{1}$ and $y_{i} ; i=1,2, \ldots, n$
G $=$ constant
$K=$ senerator load factor
$\mathrm{L}=$ length or M WD channel
$M=$ ilacia number
$M_{0}=$ inach number at inlet of MiHD channel
$\mathrm{P}=\mathrm{gas}$ pressure
$P_{0}=$ sas pressure of inlet of intiD channel
$P_{1}=$ gas pressure at exit of ididD channel
$Q_{0}=$ magnetic interaction para:aeter
$R=$ gas constant
$T=$ gas temperature
$T_{0}=$ sas temperature at inlet of diHD channel
$\mathrm{T}_{1}=$ sas temperature at exit of $\hat{\mathrm{i}} \mathrm{HD}$ channel
$u=$ gos velocity
$u_{0}=$ gas velocity at inlet of intiD channel
$u_{1}=$ gas velocity at exit of :VHD channel
$x=$ cistance along diHD channel from the inlet of the chamel
$y_{i}=$ depencient variables; $i=1,2, \ldots, n$
$y_{i L}=$ values of y_{i} at $x=1$
$\alpha=$ criving function
$\alpha_{0}=$ assigneci value of $\alpha(x)$ in the first of successive computations
$\gamma=$ specific heat ratio of a perfect gas
$\lambda_{i}=$ influence functions; $i=1,2, \ldots, n$
$P=$ gas density
$\sigma=$ gas conductivity
$\phi_{0}=$ enthalpy at inlet of hitid channel
$\varnothing_{1}=$ optiaum enthalpy at exit of iVHD channel
$\bar{\nabla}_{i} \quad=\quad$ enthalpy at exit of MHD channel obtained from first calculation in the iterative proceciure
$\omega_{0}=$ cyclarron frequency
$\tau=$ collision tiase

INTRODUCTION

In several previous reports (1, 2), Sutton has investigated the one-dimensional MHD flow for power generation. The five flow configurations investigated were: constant velocity, constant area, constant temperature, constant pressure, and constant density. Colculations in Ref. 1 showed that for a given channel length, the constant velocity distri bution yields the largest amount of power among the five cases investigated. Although the constant-velocity distribution is probobly not too far from the optimum, it is by no means clear that it is the true optimum among the infinitely many possible distri butions. One would intuitively suspect that, since the optimum distribution must be dependent on the particular function which governs the variation of conductivity, the constant-velocity distribition which ignores this dependency is unlikely to be the true optimum.

To seek a true optimum velocity distribution (and hence all the other varidbles, including cross-sectional area), one might at first be tempted to use the classical approach of calculus of variations, i.e ., the Euler-Lagrange equations with Lagrange multipliers. This was indeed tried. It turns out that in this problem, the end points (corresponding to the properties at the two ends of the channel) are not all fixed. Neither are the so-called "natural boundary conditions" satisfied. In fact, the end-point at the upper integration limit is precisely one of the quantities that we wish to maximize. Hence the usual variational method fails in this problem. An attempt to transform the independent variable from distance \mathbf{x} to stagnation temperature $\mathrm{T}_{\text {stag }}$ simplifies the calculation greatly (due to the
simul tancous recuction of one depencient variable and one consitaint equaition), but unforiunately does not seen to remove the essential difficulty. Furihernore, it can be shown that for a class of probleans of which the present problean is a special case, the slassical Euler-Lagrange formulation always leads to a singular solution. A different approach is therefore used in this paper. This is the meihod of gracients (aiso know as the methoc' of stisepest descent) and is to be briefly explained in the next secrion.

The analyrical porion of this paper was first issucci as a report of lizaited circulation by the Space Science Lajoratory of the General Electric Company (3).

2. THE METHOD OF GRADIENTS

The application of the aethod of gradients to a variational projlem was apparanily firsit proposed 'yy Courant in IVAI (i). Recently it has been applied by Kelly (3) and isyson (6) and their co-workers to the optiaization of flight trajectories in satellite and sjace vehicle re-entry. The main concept can 'De suimmarized as follows:

Consicier a set of $(n+1)$ functions

$$
y_{1}, y_{2}, y_{3}, \ldots, y_{n}, \alpha
$$

which are ail functions of the independent varicile x, between $:=0$ and $x=1$. For convenience, we seek out one of them, α, and call if the "criving funcrion". (In mosi : r rojlens, one of the functions is the dominant varidsle of the proilem and therefore is the ojvious cinoice as the ciriving iunction. In other proileras, however, the choice naf; not is ci cer-cut; in sioin ecses the
particular selection furns out to be uninportant.) The remaining \mathbf{n} functions can be considered as the "dependent variables". They are governed by the \mathbf{n} 'nnown equations:

$$
\frac{d y_{i}}{d x}=f_{i}\left(y_{1}, y_{2}, \cdots, y_{n}, \alpha, x\right) ; \quad i=1,2, \cdots, n
$$

It is to be noted that, inclucling α, we have $n+1$ unknown functiorsbut only n equations. Hence one of the functions, say $\alpha(x)$, can be arbitrarily assigned. Now we wish to moclify $\alpha(x)$ in order to maximize (or minimize) a certain quantity $\not \geq$ which is a function of the final values $y_{12}, y_{2 L}, \cdots, y_{n L}$ of the dependent varialles $y_{1}, y_{2}, \cdots, y_{n}$. That is, we wish to find the particular $\alpha(x)$ such that

$$
\phi=\phi\left(y_{12}, y_{2 L}, \cdots, y_{n L}\right)
$$

takes a moxinuan (or ainimum) value.
First of all, wa seek the effect oi sinall periuriations around an initial solution (i.e., the zero-th orcer appoxination) and write:

$$
\begin{equation*}
\frac{d}{d x}\left(\delta y_{i}\right)=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial y_{j}} \delta y_{j}+\frac{\partial f_{i}}{\partial \alpha} \delta \alpha \tag{I}
\end{equation*}
$$

Niext we define a set of "influence functions" λ_{i} such that:

$$
\begin{equation*}
\frac{d \lambda_{i}}{d x}=-\sum_{j=1}^{n} \frac{\partial f_{j}}{\partial y_{i}} \lambda_{j} \tag{2}
\end{equation*}
$$

Multiplying Eq. (1) by λ_{i} and Eq. (2) $i y \delta y_{i}$ and sumining over i, we obtain, noting that the resulfing two quantities with dousle summations cancel out,

$$
\frac{d}{d x} \sum_{i=1}^{n} \lambda_{i} \delta y_{i}=\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} \delta \alpha
$$

Integrating over the distance x, fron $x=0$ to $x=L$, we obtain:

$$
\begin{equation*}
\left[\sum_{i=1}^{n} \lambda_{i} \delta y_{i}\right]_{0}^{L}=\int_{0}^{L} \sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} \delta \alpha(x) d x \tag{3}
\end{equation*}
$$

To solve for λ_{i} by Eqse (2), we must assign boundary values to λ_{i}. Here we assign these va!ues at $x=L$ such that:

$$
\begin{equation*}
\lambda_{i L}=\left[\frac{\partial \phi_{i}}{\partial y_{i}}\right]_{i=L} \tag{4}
\end{equation*}
$$

With this choice, the !ert side of Eq. (3) becomes:

$$
\begin{equation*}
\left[\sum_{i=1}^{n} \lambda_{i} \delta y_{i}\right]_{0}^{i}=\delta \phi-\left[\sum_{i=1}^{n} \lambda_{i} \delta y_{i}\right]_{x=0} \tag{5}
\end{equation*}
$$

In the problem tinat we stail consider, the values of the dependent varidbles at $x=0$ are fixed and the:efore the last term on the right side of the cove equation can be dropped. Jusifuiting into the left side of $\mathrm{Eq}_{c}(3)$:

$$
\begin{equation*}
\delta \phi=\int_{0}^{L} \sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} \delta \alpha(x) d x \tag{6}
\end{equation*}
$$

This equation enables us to colculate, for a small perturbation $\delta \alpha(x)$ of the driving function $\alpha(x)$, the change $\delta \not \varnothing$ on the function \varnothing which we wish to optimize. (Note that $\lambda_{i}(x)$ has already been obtained from the differential equections (2), together with the boundary conditions (A)). Now, for a given value of $\int_{0}^{L}(\delta \alpha)^{2} d x$,
it can be sthown by means of Lagrange multipliers, that the largest value of $\delta \varnothing$ is cbtained if

$$
\begin{equation*}
\delta \alpha=G \sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} ; \quad G=\text { constant } \tag{7}
\end{equation*}
$$

This represents the "steepest descent" direction towards the minimura of. For an $\delta \alpha$ dlong this direction,

$$
\begin{equation*}
\delta \phi=G \int_{0}^{L}\left[\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right]^{2} d x \tag{8}
\end{equation*}
$$

The constant G is determined by the size of step, i.e., the value of $\delta \neq$, that we wish to take in each cycle of calculation. For example, if we wish to take $\delta \varnothing$ to be -1% of ϕ_{1}, we will then use:

$$
\begin{equation*}
G=\frac{\delta \phi}{\int_{0}^{L}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right)^{2} d x} ; \quad \delta \phi=-0.01 \phi \tag{9}
\end{equation*}
$$

The new $\alpha(x)$ is then

$$
\begin{equation*}
\alpha(x)_{\text {new }}=\alpha(x)_{o l d}+G \sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} \tag{10}
\end{equation*}
$$

and the calculation is repeated. It is clear that with a different $\alpha(x)$. all the $y_{i}(x)$ values will be different also. In this way each cycle of calculation yields a modification of $\alpha(x)$, that is the $\delta \alpha(x)$ which will bring ϕ closer to its optimum value. The calculation can be terminated when $\int_{0}^{L}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial d}\right)^{2} d x \quad$ is much snadler than its value during the first colculation.
3. NWLOPROJEM

We sinall now apply the dove discussion to the inhe channel flow problem. With the usual assumptions oí one-dinensional approxination, perfect gas law, and non-viscous and non-heat-conducting fluid, (see Ref. 1), the relevant equations are

Nomentu:	$p u \frac{d u}{d x}+\frac{d p}{d x}=-(1-K) B^{2} \sigma u$
Energy	$p u \frac{d}{d x}\left(C_{p} T+\frac{u^{2}}{2}\right)=-K(1-K) B^{2} \sigma u^{2}$

Confinuity \quad PAU $=$ constant
Periect Gas $\quad \beta=\rho R T$

In the cuove equations, σ is the conciuctivity and K is the loading factor; i.e., the ratio of actual voltage to open-circuit voltage. The doove equarions apply so either a continuous-electrocie generator with $\omega_{0} \tau \ll 1$ or a segmented-electrode generator with ariitrary $\omega_{0} \tau$, where ω_{0} is the cycloiron frequency and τ the collision time. However, they can also be applied to a continuous-electrode generator with arbitrory $\omega_{0} \tau$, in σ is replececi by $\frac{\sigma_{s}}{1+\omega_{0}^{2} \tau^{2}}$, where σ_{3} is the concuctivity with $B=0$.

Given the initial conditions of $x=0$, we wish to aini:nize the final sticgncition enthal ay $\left(C_{p} T+\frac{u^{2}}{2}\right)_{L} \quad$ at $x=L$.

$$
\text { Let } \frac{d u}{d x}=\alpha(x) \text { be the driving function. The dependent }
$$

varidiles are u, p and T. Let

$$
y_{1}=u, \quad y_{2}=p, \quad y_{3}=T
$$

The set of equations $\frac{d y_{i}}{d x}=f_{i}\left(y_{1}, y_{2}, \ldots, y_{n}, \alpha, x\right)$ are therefore:

$$
\begin{align*}
& \frac{d u}{d x}=\alpha \tag{la}\\
& \frac{d p}{d x}=-(1-K) B^{2} \sigma u-\frac{p}{R T} u \alpha \tag{llb}\\
& \frac{d T}{d x}=-\frac{K(1-K) B^{2} R}{C_{p}}\left(\frac{\sigma u T}{p}\right)-\frac{u}{C_{p}} \alpha
\end{align*}
$$

(II)
with $\quad \sigma=\sigma(p, T)$
Before proceeding any further, it is convenient to non-dimensionalize every quantity. For this purpose we define:

$$
\begin{array}{lll}
\bar{u}=\frac{u}{u_{0}} & \bar{p}=\frac{p}{p_{0}} & \bar{T}=\frac{T}{T_{0}} \\
\bar{x}=\frac{x}{L} & \bar{p}=\frac{p}{p_{0}} \tag{12}\\
\bar{\alpha}=\frac{d \bar{u}}{d \bar{x}} & \bar{\sigma}=\frac{\sigma}{\sigma_{0}} &
\end{array}
$$

Furthermore, we introduce the magnetic interaction parameter Q_{0} and Mach number M_{0}

$$
\begin{equation*}
Q_{0}=\frac{B^{2} \sigma_{0} L}{P_{0} U_{0}} ; \quad M_{0}=\frac{U_{0}}{\sqrt{\gamma R T_{0}}} \tag{13}
\end{equation*}
$$

(Note that the subscript 0 denotes initial conditions at $x=0$). Having defined these quantities in non-dimensional form, we shall in the following drop the bar on top, with the understanding that all quantities are now non-dimensional in the manner just defined.

The equations for the non-dimensional dependent variables u, p, and T are:

$$
\begin{equation*}
\frac{d u}{d x}=\alpha \tag{14a}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d p}{d x}=-(1-K) \gamma Q_{0} M_{0}^{2} u \sigma-\gamma M_{0}^{2} \frac{p u \alpha}{T} \tag{14b}\\
& \frac{d T}{d x}=-K(1-K)(\gamma-1) Q_{0} M_{0}^{2} \frac{\sigma u T}{p}-(\gamma-1) M_{0}^{2} u \alpha \tag{14c}
\end{align*}
$$

Let

$$
\begin{equation*}
C \equiv(1-k) Q_{0} \tag{15}
\end{equation*}
$$

The dove equations can be rewritten:

$$
\begin{align*}
& \frac{d u}{d x}=\alpha \tag{16a}\\
& \frac{d p}{d x}=-\gamma M_{0}^{2}\left(c u \sigma+\frac{p u \alpha}{T}\right) \tag{lb}\\
& \frac{d T}{d x}=-(\gamma-1) M_{0}^{2}\left(K c \frac{\sigma u T}{p}+u \alpha\right) \tag{bc}
\end{align*}
$$

The equations for the influence functions $\lambda_{\mu}, \lambda_{p}$, and λ_{T} are

$$
\begin{align*}
& \frac{d \lambda_{u}}{d x}=M_{0}^{2}\left\{\gamma\left(c \sigma+\frac{p \alpha}{T}\right) \lambda_{p}+(\gamma-1)\left(K c \frac{\sigma T}{p}+\alpha\right) \lambda_{T}\right\} \tag{17a}\\
& \frac{d \lambda_{p}}{d x}=M_{0}^{2}\left\{\gamma\left(c u \frac{\partial \sigma}{\partial p}+\frac{u \alpha}{T}\right) \lambda_{p}+(\gamma-1) K c u T \frac{\partial}{\partial p}\left(\frac{\sigma}{p}\right) \lambda_{T}\right\} \tag{17b}\\
& \frac{d \lambda_{T}}{d x}=M_{0}^{2}\left\{\gamma\left(c u \frac{\partial \sigma}{\partial T}-\frac{p u \alpha}{T^{2}}\right) \lambda_{p}+(\gamma-1) K c \frac{u}{p} \frac{\partial}{\partial T}(\sigma T) \lambda_{T}\right\} \tag{17c}
\end{align*}
$$

The non-dimensional final enthalpy which is the quantity that we wish to minimize is:

$$
\phi_{1}=T_{1}+\frac{\gamma-1}{2} M_{0}^{2} u_{1}^{2}
$$

The boundary values of λ_{u}, λ_{p}, and λ_{T} are therefore:

$$
\begin{align*}
& {\left[\lambda_{L}\right]_{1}=\frac{\partial \phi}{\partial u_{1}}=(\gamma-1) M_{0}^{2} u_{1}} \tag{18a}\\
& {\left[\lambda_{p}\right]_{1}=\frac{\partial \phi}{\partial p_{1}}=0} \tag{186}\\
& {\left[\lambda_{T}\right]_{1}=\frac{\partial \phi}{\partial T_{1}}=1} \tag{18c}
\end{align*}
$$

The quantity proportional to our desired $\quad \delta \alpha(x)$ is:

$$
\begin{equation*}
\sum_{i=1}^{3} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}=(\gamma-1) M_{0}^{2}\left\{\frac{\lambda_{u}}{(\gamma-1) M_{0}^{2}}-\frac{\gamma}{\gamma-1} \frac{p u}{T} \lambda_{p}-u \lambda_{r}\right\} \tag{19}
\end{equation*}
$$

We now introduce for convenience two new quantities λ_{μ}^{\prime} and λ_{p}^{\prime} to replace λ_{μ} and λ_{p} :

$$
\begin{equation*}
\lambda_{u}^{\prime}=\frac{\lambda_{u}}{(\gamma-1) M_{0}^{2}} ; \quad \lambda_{p}^{\prime}=\left(\frac{\gamma}{\gamma-1}\right) \lambda_{p} \tag{20}
\end{equation*}
$$

Eqs. (17) are then simplified:

$$
\begin{align*}
& \frac{d \lambda_{u}^{\prime}}{d x}=\left(c \sigma+\frac{p \alpha}{T}\right) \lambda_{p}^{\prime}+\left(K c \frac{\sigma T}{p}+\alpha\right) \lambda_{T} \tag{ala}\\
& \frac{d \lambda_{p}^{\prime}}{d x}=\gamma M_{0}^{2}\left\{\left(c u \frac{\partial \sigma}{\partial p}+\frac{u \alpha}{T}\right) \lambda_{p}^{\prime}+K c u T \frac{\partial}{\partial p}\left(\frac{\sigma}{p}\right) \lambda_{T}\right\} \tag{alb}\\
& \quad \frac{d \lambda_{T}}{d x}=(\gamma-1) M_{0}^{2}\left\{\left(c u \frac{\partial \sigma}{\partial T}-\frac{p u \alpha}{T^{2}}\right) \lambda_{p}^{\prime}+K c \frac{u}{p} \frac{\partial}{\partial T}(\sigma T) \lambda_{T}\right\} \tag{ic}
\end{align*}
$$

The greatest implication is, however, in Eqs. (18) and (19). Eqs. (13) become:

$$
\begin{align*}
& {\left[\lambda_{u}^{\prime}\right]_{1}=u_{1}} \tag{22a}\\
& {\left[\lambda_{p}^{\prime}\right]_{1}=0} \tag{22b}
\end{align*}
$$

$$
\begin{equation*}
\left[\lambda_{T}\right]_{1}=1 \tag{22c}
\end{equation*}
$$

and Eq. (19) becomes:

$$
\begin{equation*}
\sum_{i=1}^{3} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}=(\gamma-1) M_{0}^{2}\left(\lambda_{\mu}^{\prime}-\frac{p u}{T} \lambda_{p}^{\prime}-\mu \lambda_{T}\right) \tag{23}
\end{equation*}
$$

It should be noted that in aniviid problem, the physical reality calls for positive and non-vanishing values of P, T, and u. Under these restrictions, it may be that a stationary value of ϕ_{i} does not exist. In other words, it is possible that the optimuin \varnothing_{1} requires zero p and T (hence infinite area) at exit, a requirement which is hard to meet in practice. This is reflected in some of the calculations. Thus for certain assumed forms of conductivity in relation to temperature or temperature and pressure, this method results in nu ainiauii p_{1} despite the fact that successive computations yield progressively smaller \not_{1}. For these instances, there is no stationary value of ϕ_{1} with respect to the driving function $\alpha(x)$ within the restrictions of physical reality.

It also should be noted that peculiar to the iviHD problem, $\delta \alpha$ will be zero whenever $\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha} \quad$ becomes zero, or equivalently, the right hand side of Eq. (23) vanishes. Substituting the boundary conditons given in Eqs. (22a), (22b), and (22c) into Eq. (23), one obtains $(\delta \alpha)_{x=1}=0$ regardless of the value of G. Since $\alpha(x)$ is arbitrarily assigned in the first iteration, the value of d at $x=1$ will remain this arbitrarily assigned value. It means that this method does not alter the rate of change of velocity of the exit from its initially assigned value. This appears to be purely coincidental due to the particular values of boundary conditions associated with this problern. However, we shall see later that actual computations seem to indicate that this does not pose an intrinsic dilemma to the minimization of \varnothing_{1}.
4. SUMMARY OF COMDUTATICRAL ROGEDURE

The coanputational proceciure can now be sumacrized as follows: Given the following quantities which are constants of the problen:

Generator Cocfficient K
Nagnetic Paraneter \quad O
Inlet Nach Number $\quad A_{0}$
Ratio of Specific Heats X

$$
\text { bence, } C=(1-K) \sigma_{0}
$$

and the variation of concluctivity $\sigma=\sigma(p, T)$
Step 1 Assuming ecistriburion for the "driving function" $\alpha(x)$, we can nurnerically integrate the following set of si:nultaneous differential equations:

$$
\begin{align*}
& \frac{d u}{d x}=\alpha \tag{10a}\\
& \frac{d p}{d x}=-\gamma M_{0}^{2}\left(c u \sigma+\frac{p u \alpha}{T}\right) \tag{16b}\\
& \frac{d T}{d x}=-(\gamma-1) M_{0}^{2}\left(k C \frac{\sigma u T}{p}+u \alpha\right) \tag{16c}
\end{align*}
$$

The integration is to be perforaed tron $x=0$ to $x=1$. The boundary conditions at $x=0$ are $u_{0}=p_{0}=T_{0}=1$. When the integration is completed and the final values u_{1}, p_{1} and T_{1} at $x=i$ are found, wa obrain $\phi_{1}=T_{1}+\frac{\gamma-1}{2} M_{0}^{2} u_{1}^{2}$ Since this value of $\not \chi_{1}$ is not necessarily the wini:num, we can proceed to the next step:

Step 2 Numerically integrate the following set of simultaneous differential equations for the "influence functions" $\lambda_{u}^{\prime}, \lambda_{p}$, and λ_{T} :

$$
\begin{align*}
& \frac{d \lambda_{u}^{\prime}}{d x}=\left(c \sigma+\frac{p \alpha}{T}\right) \lambda_{p}^{\prime}+\left(k c \frac{\sigma T}{p}+\alpha\right) \lambda_{T} \tag{ila}\\
& \frac{d \lambda_{p}^{\prime}}{d x}=\gamma M_{0}^{2}\left\{\left(c u \frac{\partial \sigma}{\partial p}+\frac{u \alpha}{T}\right) \lambda_{p}^{\prime}+k c u T \frac{\partial}{\partial p}\left(\frac{\sigma}{p}\right) \lambda_{T}\right\} \\
& \frac{d \lambda_{T}}{d x}=(\gamma-1) M_{0}^{2}\left\{\left(c u \frac{\partial \sigma}{\partial T}-\frac{p u \alpha}{T^{2}}\right) \lambda_{p}^{\prime}+k c \frac{u}{p} \frac{\partial}{\partial T}(\sigma T) \lambda_{T}\right\}
\end{align*}
$$

(216)
(21c)

This integration is to be performed "backwards" from $x=1$ to $x=0$, starting with the boundary conditions at $x=1$:

$$
\begin{align*}
& {\left[\lambda_{u}^{\prime}\right]_{1}=u_{1}} \tag{22a}\\
& {\left[\lambda_{p}^{\prime}\right]_{1}=0} \tag{22b}\\
& {\left[\lambda_{T}\right]_{1}=1} \tag{22c}
\end{align*}
$$

Note that all quantities such as u, p, T, and σ appearing in the coefficients of Eqs. (21) ore the results of Step 1 .

Step 3 The desired variation $\delta \alpha(x)$ on the driving function $\alpha(x)$ is then
or

$$
\begin{align*}
& \delta \alpha(x)=G(\gamma-1) M_{o}^{2}\left(\lambda_{u}^{\prime}-\frac{p u}{T} \lambda_{p}^{\prime}-u \lambda_{T}\right) \\
& \delta \alpha(x)=G \Lambda \tag{23a}
\end{align*}
$$

where $\quad \Lambda=\Lambda(x)=(\gamma-1) M_{0}^{2}\left(\lambda_{\mu}^{\prime}-\frac{p u}{T} \lambda_{p}^{\prime}-u \lambda_{T}\right)$

The constant $\}$ is ditained from

$$
G=\frac{\delta \phi}{\int_{0}^{1} \Lambda^{2} d x}
$$

$$
\begin{equation*}
\alpha(x)_{\text {new }}=\alpha(x)_{\text {old }}+\delta \alpha(x) \tag{24}
\end{equation*}
$$

The iteration can Je terminated when $\int_{0}^{1} \Lambda^{2} d x$ is nuch snallar than its value in the first calculation.

5. NUABERICALRESULTS

I. Conductivity varies with $T^{(\omega}$

If conductivity is assuned to be a function of temperature only and is of the form of the power law

$$
\begin{equation*}
\sigma=T^{\omega} \tag{25}
\end{equation*}
$$

then Eqs. (.6a), (16i3), and (16c) reciuce to

$$
\begin{align*}
& \frac{d u}{d x}=\alpha \\
& \frac{d p}{d x}=-\gamma M_{0}^{2}\left(c u T^{\omega}+\frac{p u \alpha}{T}\right) \tag{1}\\
& \frac{d T}{d x}=-(\gamma-1) M_{0}^{2}\left(k c u \frac{T^{\omega+1}}{p}+u \alpha\right) \tag{l6c'}
\end{align*}
$$

Similarily, Eqs. (21a), (21b), and (21c) reduce to

$$
\begin{align*}
& \frac{d \lambda_{u}^{\prime}}{d x}=\left(C T^{\omega}+\frac{p \alpha}{T}\right) \lambda_{p}^{\prime}+\left(k C \frac{T^{\omega+1}}{p+\alpha}\right) \lambda_{T} \tag{2la'}\\
& \frac{d \lambda_{p}^{\prime}}{d x}=\gamma M_{0}^{2}\left(\frac{u \alpha}{T} \lambda_{p}^{\prime}-k c u \frac{T^{\omega+1}}{p^{2}} \lambda_{T}\right)
\end{align*}
$$

$$
\begin{equation*}
\frac{d \lambda_{T}}{d x}=(\gamma-1) M_{c}^{2}\left\{\left(c u \omega T^{\omega-1}-\frac{p u \alpha}{T^{2}}\right) \lambda_{p}^{\prime}+\frac{(\omega+1) k c u}{p} T^{\omega} \lambda_{T}\right\} \tag{8}
\end{equation*}
$$

The doove two sets of equations are to be integrated numerically by the procedure outlined doove, together with the civen boundary concitions.

The numberical integration was carried out with an RPC 4000 electronic digital computer. In general, the progran was written in such a way that successive "descending" steps are progressively siadlor, and aro proportional to $\int_{0}^{l}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial x}\right)^{2} d x \quad$. This is accomplished Jy taking $\delta \varnothing$ in the $(n+1)$-th computarion as

$$
[\delta \phi]_{n+1}=\frac{\left[\int_{0}^{2}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right)^{2} d x\right]_{n+1}}{\left[\int_{0}^{2}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right)^{2} d x\right]_{n}}[\delta \phi]_{n}
$$

The calculation is siopped when sinally $\int_{0}^{l}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right)^{2} d x \quad$ is, say, $\frac{1}{1000}$ of its value in the first calculation, or when inspection shows that $\not \mathscr{L}_{1}$ has reached a ainianura value.

For those seis of parameters which co not yield a ainimum ϕ_{1} (see Secrion A), the value of $\int_{0}^{L}\left(\sum_{i=1}^{n} \lambda_{i} \frac{\partial f_{i}}{\partial \alpha}\right)^{2} d x \quad$ in successive co:aputations is progressively larger, as one might expect. Cases A and O in Table I are examples. $\delta \phi$ in these cases is set to be constant in successive computations.

Fic. 1 is a typical example showing the pattern oi clescent of \mathscr{y}_{1} in arriving at its minimum value. The exit pressure is used as the abscissa to indicate the manner of convergence. Other quantities, such as temperature, can also be used.

In contrast to Fig. 1, a byical case of progressively desconding \mathcal{A}_{1}, out with no apjarent ainiau:a ϕ_{1} is shown in Fig. 2. It is of inieresi to note that when a aininumia $\not \varnothing_{1}$ exisis, ,rogrossively $\not \varnothing_{1}$ aoves clong a pardola-ilike path. When a mininuma ℓ_{1} coos not exist, \varnothing_{1} moves alone a hyje bola-like, path.

Tojle I presents the results for $\sigma=T^{\omega}$, where $\omega=10$ with the exception of case \tilde{S}^{\prime} in which $\omega=2$. As shown in this to'le various values of the parcaneters involved are assigned. The rosults are summarized in the last 6 colvinns in the following order: inlor stagnation enthal ${ }^{2} \mathscr{D}_{0}$, oftiaumexit stagnation enthalipy \mathscr{P}_{1}, exit stagnation enthalipy calculated in the first $\pi \overline{X_{1}} \bar{X}_{1}$ (in all cases excepi case 7 the first ity is a constant velocity distribution, i.e, $\alpha_{c}=0$), fraction of power extracied with optinu:a path $\left(\varnothing_{0}-\varnothing_{1}\right) / \not \varnothing_{0}$, fraction of power extractod in the first ity $\left(\phi_{0}-\bar{\phi}_{1}\right) / \mu_{0}$, and the percentage gain of power extracted with optimun path as compared to the first try $\left(\bar{\sigma}_{1}-\phi_{1}\right) /\left(\phi_{0}-\bar{\phi}_{1}\right)$.

The set oi computations fro.n sase 1 to 4 have identical entrance concitions axcept the entrance Mach nu:iber. The results sinowed that $\not \phi_{1}$ has a rininam only wion $\mathrm{A}_{0}^{2}=0.5,1.0$, and I. 5 . For the case oi $\mathrm{N}_{0}^{2}=2.3$ the cecracase of $\not Z_{1}$ in successive cornputations is lile that given in Fic. 2. The behovior of this type of descent will be discussed larer. Velocity variation for optinum \varnothing_{1} of these runs are shown in Fig. 3. The local Mach number and channel cross-sectional area are also calculared for these optimum cases and are given in Fig. 4 and 5, respectively. Calcularions using different size of steps in the iterations show that the final results are indepencient of the size of the steps taken in each of the successive computarions.

Case \mathcal{E} is like that of Case 1 except the value of γ is taken as 1.67 instead of 1.2. This change results in a large increase of extracied power. The velocity, local Mach nu:iber, anc cross-sectional area for optimu:i concition are shown in Fig. ${ }^{\circ}$.

In case $6, \omega=2$ was used. It was found that similar to case 4, there was a progressive cisscent of ϕ_{1}, but with no :ainiauna.

Case 7 was assigned an $\alpha_{0}=1$ in tine first co.nputation. As noted before, the slope of u at $x=1$ will then always remain unity in all the successive cornputations. Velocity, local Macin nuaijer, and cross-sectiond area for optiaum concitions are shown in Figs. 3 through 5, respectivaly. Because of this intrinsic property of the first assigned value of α, the volocity variction is slightly cifferent from that of case 1, which has an $\alpha_{0}=0$. The resulting cinonnel cross-sectional area and the optiauna f_{1} for 'joth cases, howsver, are exactly the sane with any difference appearing only in the 4 th or 5th significant figure.

Casss ithrough io wers designed to itind the :nost favordble entrance iniach number anong all the optinura \varnothing_{1}^{\prime} s for constant siagnation enthalpy at inlet. If $\mathcal{C}_{\text {i }}$ is taken to ise unity for $: i_{0}^{2}=1$, then

Using

$$
\frac{Q_{0}}{\left(Q_{0}\right)_{M_{0}^{2}=1}}=Q_{0}=\frac{\left(T_{0}^{\omega-k} / M_{0} P_{0}\right)}{\left(T_{0}^{\omega-1 / 2} / M_{0} P_{0}\right)_{M_{0}^{2}=1}}
$$

$$
T_{0}=\frac{T_{0, s t a y}}{1+\frac{r-1}{2} M_{0}^{2}}
$$

we obrain

$$
G_{0}=\frac{\frac{1}{M_{0}}\left(1+\frac{\gamma-1}{2} M_{0}^{2}\right)^{0.5+\frac{1}{\gamma-1}-\omega}}{\left(1+\frac{\gamma-1}{2}\right)^{0.5+\frac{1}{\gamma-1}-\omega}}
$$

If $\gamma=1.2, \omega=10$, then $Q_{0}=\frac{1.537}{N_{0}}\left(1+0.1 M_{0}^{2}\right)^{4.5}$.
This variation of E_{0} with M_{0} was aciopted in cases $3,9,10 . M_{0}^{2}=0.5,1.5,2.0$, respectivel $\mathrm{y}_{\mathrm{e}} \therefore_{0}^{2}=1$ is already covered in case 2.)

Velocity, Mach number, anc cross-sectional area of these cases are shown in Figs 7, 0 , and 9 respectively. From Fig. 10, it is seen that the most favordble entrance diach number is near unity.

Siailar cal culations were pe rformed in case 11 for $\gamma=1.67$. Again, Q_{0} was chosen to be unity for $\mathrm{H}_{0}^{2}=1.0$. The results of case 11 are plotted in Fig. 6 .

It was noted that for conductivity idking the forn of $\sigma=\tau^{\omega}$, cases 4 and 6 do not have a minimuan $\varnothing_{1} \cdot \phi_{1}$ in these cases is progressively smaller in successive computations, and P_{1} and T_{1} progressively approach zero. This behovior can be seen fron Eqs: ($10 \mathrm{~b}^{\mathbf{2}}$) and (ló $c^{\mathbf{d}}$). Pressure and temperature will approach zero when $\frac{d p}{d x}$ and $\frac{d T}{d x}$ secone excessively negative throughout the channel: Now, when the teras within the parenthesis in these equations assume a negative value, then p and T will always be positive and cannot approach zero: When these terms assume a positive value, then $\frac{d p}{d x}$ and $\frac{d T}{d x}$ become excessively negative if ω_{0}^{2} or γ, or both take a large value, and hence P_{1} and T_{1} approaches zero at the exit. The first term inside the parenthesis in both equations is alwars positive. In the case of a nearly-consiant-valocity channel,
say, this term is excessively large when wis small. The do wove is a heuristic explanation of case 4, where M_{0}^{2} becomes excessively large, and of case 6, where w is not sufficiently large.
II Conductivity varies as $\frac{T^{\omega}}{\sqrt{p}}$
When conductivity is taken as a function of both temperature and pressure, and is of the form $\quad \sigma=\frac{T^{10}}{\sqrt{p}}$

Eqs. (1úa), (16b), and (16c) become:

$$
\begin{align*}
& \frac{d u}{d x}=\alpha \\
& \frac{d p}{d x}=-\gamma M_{0}^{2}\left(c u \frac{T^{10}}{p^{1 / 2}}+p \frac{u \alpha}{T}\right) \tag{165"}\\
& \frac{d T}{d x}=-(\gamma-1) M_{0}^{2}\left(k d u \frac{T^{10}}{p^{3 / 2}}+u \alpha\right)
\end{align*}
$$

(16a")
($16 c^{\prime \prime}$)

Eqs. (21a), (2lb), and (21c) become :

$$
\begin{align*}
& \frac{d \lambda_{u}^{\prime}}{d x}=\left(C \frac{T^{\prime 0}}{p^{1 / 2}}+\frac{p \alpha}{T}\right) \lambda_{p}^{\prime}+\left(K C \frac{T^{11}}{p^{3 / 2}}+\alpha\right) \lambda_{T} \\
& \left.\frac{d \lambda_{p}^{\prime}}{d x}=\gamma M_{0}^{2}\left\{\left(-C \frac{u T^{10}}{2 p^{3 / 2}}+\frac{\alpha u}{T}\right) \lambda_{p}^{\prime}-\frac{3}{2} K C \frac{u T^{11}}{p^{5 / 2}} \lambda_{T}\right\} \quad \text { (21b} a^{\prime \prime}\right) \\
& \frac{d \lambda_{T}}{d x}=(\gamma-1) M_{0}^{2}\left\{\left(10 c \frac{u T^{q}}{p^{1 / 2}}-\frac{\alpha u p}{T^{2}}\right) \lambda_{p}^{\prime}+11 K C \frac{u T^{10}}{p^{3 / 2}} \lambda_{T}\right\}
\end{align*}
$$

Cases 12 to 15 in Taile II list the given conditions and results in the series of computations carried out with this form of conductivity. None of this series of computation gives a mininum. $\not \mathscr{F}_{1} \cdot \not \varnothing_{1}$ in successive computations descencis like that given in Fig. 2. It appears that the heuristic argu:nent outlined before for cases 4 and 6 is equally applicable to explain the result. Fig. 11 is a typiced example of the successive steps assu:ned by velocity, pressure, temperature, and cross-sectional area in the iteration.

Since zero pressure and temperature ai the exit iaplies infinite cross-sectional area, one is naturally interssted only in exit pressure and temperature whicin give an exit cross-sectional area of practical value. For this purpose, an interpolated ϕ_{1} is astained for a fixeci exit-entrance area ratio. ϕ_{1} thus obtained is tabulated in Tdole $I 1$ for $\frac{A_{1}}{A_{0}}=10$, anc' 20. Siailar results íor cases 4 and ó are dso given in Table II. The Jlank in case 15 for $\frac{A_{1}}{A_{0}}=10$ is due to the fact that the constant velocity $(\alpha=0)$ calculation alreaciy yialds an $\frac{A_{1}}{A_{0}}=13.34$. In ali cases, the aciveritage over constant velocity cistribution is large.

Acknowledgements

The authors are pleased to express their deep gratitude to Dr. George W. Sutton for suggesting this problem as well as many interesting discussions. They are also indebted to Professor Arthur E. Bryson of Harvard University for calling their attention to Reference 6.

1. Sutton, G. W., "The Quasi-one Dimensional Flow of an Electrically Conducting Gas for the Generation of Electrical Power", General Electric Company TIS R59SD307, Feb. 1959.
2. Sutton, G. W., "MHD Channel Flow of a Perfect Gas for the Gensration of Electrical Power", General Electric Co. TIS R59SD473, December 1959.
3. Yeh, H., "Determination of the Longitudinal Variation of iniHD Channel Cross-section for Miaxinum Power" , General Electric Company TIS R61SD066, June 1961.
4. Courant, R., "Variational Niethods for the Solution of Problems of Equilibrium and Vibrations", Bull. Am. Niath. Soc., Vol . 49, No. 1, Jan. 1943.
5. Kelley, H. J., "Gradient Theory of Optimal Flight Paths", Am. Rocket Society Journal, Vol. 30, No. 10, Oct. 1960.
6. Bryson, A. E., Denhan, W. F., Carrol, E. J., and Mikarni, Ki, "Determination of the Lift or Drag Progran that Ninimize Re-entry Heating with Acceleration or Range Constraints Using a Steepest Descent Computation Procedure" , Journal Aero/Space Sciences, Vol . 29, iNo. 4, April 1962.
Table I Results of Computation for $\sigma=T^{(1)}$

ease 10.		M_{0}^{2}	u)	γ	Q_{0}	ϕ 。	$\begin{gathered} \text { Optimum } \\ \phi_{1} \end{gathered}$	$\bar{\phi}_{1}(\text { from }$	$\frac{\phi_{0}-\phi_{1}}{\phi_{0}} .$	$\begin{array}{r} \emptyset \\ 0 \\ \hline \end{array}$	$\begin{gathered} \phi_{1}-\bar{\phi} \\ \frac{1}{\phi_{0}-\bar{\phi}_{1}} \end{gathered}$
1 or 1 A	0	0.5	10	1.2	1.0	1.05	1.02307	1.02467	2.56	2.41	6.32
2	0	1.0	10	1.2	1.0	1.10	1.04851	1.04853	4.68	4.68	0.03
3	0	1.5	10	1.2	1.0	1.15	1.06894	1.07129	. 7.04	6.84	2.97
- 4	0	2.0	10	1.2	1.0	1.20		1.09257			
5	0	0.5	10	1.67	1.0	1.1675	1.07905	1.09930	. 7.58	5.84	30
6	0	0.5	2	1.2	1.0	1.05		1.02181			
7 or 1B	1	0.5	10	1.2	1.0	1.05	1.02333	1.02567	2.48	2.31	9.6
8	0	0.5	10	2.2	1.744	1.05	1.00178	1.00532	4.59	4.25	7.9
9	0	1.5	10	1.2	0.668	1.15	1.09689	1.09838	4.62	4.49	2.9
10	0	2.0	10	1.2	0.478	1.20	1.14567	1.15067	4.53	4.09	10.6
11	0	0.5	10	1.67	4.120	1.1675	0.932160	0.980668	20.1	16.0	26.5

$$
\begin{aligned}
& \alpha_{0} \text { assi,nod } \alpha(x) \text { in the first of successive computations }
\end{aligned}
$$

FIG. 1 ITERATION PATTERN FOR A CASE WITH MIINMUM Φ_{1}

fig. 2 iteration pattern for a Case without minimum $\boldsymbol{\phi}_{\mathbf{1}}$

FIG. 5 CROSS-SECTIONAL AREA DISTRIBUTION FOR DIFFERENT INLET MACH NUMBERS WITH $Q_{0}=1$

FIG. 6 VELOCITY, MACH NUMBER, AND CROSS-SECTIONAL AREA DISTRIBUTIONS FOR $\gamma=1.67$

FIG. 7 VELOCITY DISTRIBUTION FOR DIFFRRENT INLLet MACH NUMBERS WITH CONSTANT INLET STAGNATION ENTHALPY

FIG. Il VARIATION OF VELOCITY, PRESSURE, TEMPERATURE, AND CROSS-SECTION AL AREA FOR A CASE WITHOUT MINIMUM

